конечное объединение

конечное объединение
finite jog мат., finite union

Русско-английский научно-технический словарь Масловского. 2015.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Локально конечное покрытие — Покрытие в математике  это семейство множеств таких, что их объединение содержит заданное множество. Обычно понятие покрытия рассматривается в контексте общей топологии. Содержание 1 Определения 2 Связанные определения 3 Свойства …   Википедия

  • Локально конечное семейство подмножеств — В общей топологии локальная конечность является свойством семейства подмножеств топологического пространства. Это понятие является естественным обобщением понятия конечного семейства и играет ключевую роль при изучении паракомпактности и… …   Википедия

  • ЛОКАЛЬНО КОНЕЧНОЕ ПОКРЫТИЕ — покрытиетопологич. пространства его подмножествами такое, что у каждой точки есть окрестность, пересекающаяся лишь с конечным числом элементов этого покрытия. Не из всякого открытого покрытия прямой можно выделить Л. к. п.: достаточно рассмотреть …   Математическая энциклопедия

  • Парадокс Банаха — Тарского — Шар можно «разбить» на куски и собрать из них два таких же шара. Парадокс Банаха  Тарского, или парадокс удвоения шара, говорит, что трёхмерный шар равносоставлен двум своим копиям. Два подмножества евклидова пространства называются… …   Википедия

  • Парадокс Банаха-Тарского — Шар можно «разбить» на куски и собрать из них два таких же шара. Парадокс Банаха  Тарского, или парадокс удвоения шара, говорит, что трёхмерный шар равносоставлен двум своим копиям. Два подмножества евклидова пространства называются… …   Википедия

  • Парадокс Банаха—Тарского — Шар можно «разбить» на куски и собрать из них два таких же шара. Парадокс Банаха  Тарского, или парадокс удвоения шара, говорит, что трёхмерный шар равносоставлен двум своим копиям. Два подмножества евклидова пространства называются… …   Википедия

  • Парадокс Хаусдорфа — Банаха — Тарского — Шар можно «разбить» на куски и собрать из них два таких же шара. Парадокс Банаха  Тарского, или парадокс удвоения шара, говорит, что трёхмерный шар равносоставлен двум своим копиям. Два подмножества евклидова пространства называются… …   Википедия

  • Парадокс удвоения шара — Шар можно «разбить» на куски и собрать из них два таких же шара. Парадокс Банаха  Тарского, или парадокс удвоения шара, говорит, что трёхмерный шар равносоставлен двум своим копиям. Два подмножества евклидова пространства называются… …   Википедия

  • Парадокс Банаха — Шар можно «разбить» на куски и собрать из них два таких же шара. Парадокс Банаха  Тарского, или парадокс удвоения шара теорема в …   Википедия

  • ВРОНЬСКИЙ-ХЁНЕ — (Wroński Hoene), Юзеф Мария (24 авг. 1778 – 9 авг. 1853) – польский математик и философ мистик. В Германии изучал философию (особенно Канта) и математику. С 1800 до конца жизни жил во Франции. В математике именем В. Х. назван введенный им… …   Философская энциклопедия

  • КОНСТРУКТИВНОЕ ПОДМНОЖЕСТВО — алгебраического многообразия конечное объединение локально замкнутых (в Зариского топологии )подмножеств. Локально замкнутым подмножеством наз. пересечение открытого и замкнутого подмножеств. К. п. образуют булеву алгебру и могут быть определены… …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”